
International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Incremental Learning Algorithm for association
rule Mining

Mrs. Prajakta Vispute, Prof. Dr. S. S. Sane

Abstract— These Association rule mining is to find association rules that satisfy the predefined minimum support and confidence from a given

database. The Apriori and FP-tree algorithms are the most common and existing frequent itemsets mining algorithm, but these algorithms lack
incremental learning ability. Incremental learning ability is desirable to solve the temporal dynamic property of knowledge and improve the per-
formance of the mining process as the incremental data is available with the passage of time. Currently FUFP, pre-FUFP and IMBT algorithms
have been developed that support incremental learning. The IMBT uses a binary tree data structure called an Incremental mining binary tree.
This work proposes a novel incremental learning algorithm that makes use of a data structure called Item-Itemset(I-Is) tree that is a variation of
B+ tree. Initially I-Is tree is created from the original data to allow searching of frequent items based on the threshold values. The created I-Is tree
is updated incrementally.

 Index Terms— : Association rule mining, B+ Trees, Data Mining,Frequent pattern tree, IMBT, Incremental mining,Support.

——————————  ——————————

1 INTRODUCTION

HIS Data mining is one of the fastest growing fields in the

computer industry. Data mining refers to extracting or

mining knowledge from large amounts of data. Frequent pat-

tern, as the name suggests, are patterns (a set of items, subse-

quences, substructures, etc.) that occurs frequently in a data.

Association rule mining [1] [2] [3] is one method of finding

frequent itemsets in which, it finds interesting associations

and/or correlation relationships among a large set of data

items. Association rules show attributes value conditions that

occur frequently together in a given dataset. There are differ-

ent association rule mining algorithms [1] [2] [6] [7] [8] in data

mining and Incremental data mining. In incremental data min-

ing [9] [10] [11] [12] speeding up the process of mining the

frequent itemsets and proper utilization of memory is neces-

sary.

Existing incremental data mining method uses a tree

structure called IMBT (Incremental Mining Binary Tree) [16] to

enumerate the support of each itemset in an efficient way after

the transactions are added or deleted. Instead of rescanning

the database many times to enumerate the support of the

itemsets after the database update, it processes a transaction at

a time and records the possible itemsets in a data structure

that can reduce the processing and IO time.

In this work, conceptually suggested technique tries

to use previous results as the basis to incrementally mine the

database with new transactions. There are some performance

issues such as a need to rescan the original database to enu-

merate the support when a database is updated, and issue to

deal with the threshold changes during the lifetime of the da-

tabase. To resolve these issues and to satisfy the speed and

memory requirements the proposed work recommends the

use of data structure called Item-Itemset (I-Is) Trees which is

based on the concept of B+ Trees.

2 LITERATURE REVIEW

Mining frequent itemsets is a fundamental requirement for

mining association rules. It plays an important role in many

other data mining tasks such as sequential patterns, multi-

dimensional patterns. In this section most popular and widely

used association rule mining algorithms are discussed.

2.1 APRIORI ALGORITHM

Apriori algorithm [1] [2] works with Candidate Gen-

eration-and-Test Approach. Apriori algorithm computes the

frequent itemsets in the database through several iterations.

Iteration i computes all i-frequent itemset (itemset with i-

elements).Each iteration has two steps:

1. Candidate generation

2. Candidate counting & selection

In the candidate generation phase of the first iteration, set of

candidate itemsets containing all 1-itemset is generated and in

the counting phase support for all 1-itemset is calculated for

the whole database. Finally, only 1-itemsets with support

above required threshold is selected as frequent itemset. The

next iteration is based on the property that if a pattern with k

items is not frequent, any of its super-patterns with (k +1) or

more items can never be frequent.

A candidate-generation-and-test approach iteratively

generates the set of candidate patterns of length (k + 1) from

the set of frequent patterns of length k (k ≥ 1) and check their

corresponding occurrence frequencies in the database.

The Apriori algorithm achieves good reduction in the

size of candidate sets. However, when there exist a large num-

ber of frequent patterns and/or long patterns, candidate gen-

eration-and-test methods may still suffer from generating

huge numbers of candidates and taking many scans of large

databases for frequency checking. Since, the number of data-

base accesses of the Apriori algorithm has equaled to the size

T

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

of the maximal frequent itemset. It accesses the database k

times even when only one k-frequent itemset exists. If the da-

taset is huge, the multiple database scans can be one of the

drawbacks of the Apriori algorithm. Moreover it does not have

incremental learning ability.

2.2 FREQUENT PATTERN TREE (FP Tree)

The frequent pattern (FP-tree) [6] [7] is used for efficiently

mining association rules without generation of candidate

itemsets. The FP-tree mining algorithm consists of two phases.

The first phase focuses on constructing the FP-tree from the

database, and the second phase focuses on deriving frequent

patterns from the FP-tree. The FP-tree is used to compress a

database into a tree structure by storing only large items. It is

condensed and complete for finding all the frequent patterns.

Three steps are involved in FP-tree construction phase. The

database is first scanned to find all items with their frequency.

The items with their supports larger than a predefined mini-

mum support are selected as large 1-itemsets (items). Next, the

large items are sorted in descending frequency. At last, the

database is scanned again to construct the FP-tree according to

the sorted order of large items. The construction process is

executed tuple by tuple, from the first transaction to the last

one. To facilitate tree traversal, an item header table is built in

which each item points to its first occurrence in the tree. The

Header_Table includes the sorted large items and their point-

ers (called frequency head) linking to their first occurrence

nodes in the FP-tree. If more than one node has the same item

name, they are also linked in sequence. Links between nodes

are single-directional from parents to children. After all trans-

actions are processed, the FP-tree is completely constructed.

This approach constructs a highly compact FP-tree, which is

usually substantially smaller than the original database and

thus saves the costly database scans in the subsequent mining

processes. Moreover it also does not have incremental learning

ability.

2.3 THE FUFP ALGORITHM

In real-world applications, transaction databases usually grow

over time and the association rules mined from them must be

re-evaluated. Some new association rules may be generated

and some old ones may become invalid. Conventional batch-

mining algorithms solve this problem by reprocessing the en-

tire new databases when new transactions are inserted into

original databases. They, however, require lots of computa-

tional time and waste existing mined knowledge. The FUP

algorithm effectively handles new transactions for maintain-

ing association rules. A fast updated FP-tree (FUFP-tree) [13]

structure is proposed, which make the tree update easier as

compared to a FP tree algorithm.

 FUFP tree construction

An FUFP-tree [13] [14] must be built in advance from

the original database before new transactions arrive. The FUFP

tree construction algorithm is the same as the FP-tree except

that the links between parent nodes and their child nodes are

bi-directional. Bi-directional linking will help fasten the pro-

cess of item deletion in the maintenance process. Besides, the

counts of the sorted frequent items are also kept in the Head-

er_Table as like a FP - tree.

Incremental FUFP tree maintenance approach

When new transactions are added, the proposed in-

cremental maintenance algorithm will process them to main-

tain the FUFP-tree. It first partitions items into four parts ac-

cording to whether they are large or small in the original da-

tabase and in the new transactions. Each part is then processed

in its own way. The Header_Table and the FUFP-tree are cor-

respondingly updated whenever necessary.

In the process for updating the FUFP-tree [13], item

deletion is done before item insertion. When an originally

large item becomes smaller, it is directly removed from the

FUFP-tree and its parent and child nodes are then linked to-

gether. On the contrary, when an originally small item be-

comes large, it is added to the end of the Header_Table and

then inserted into the leaf nodes of the FUFP-tree. It is reason-

able to insert the item at the end of the Header_Table because

when an originally small item becomes large due to the new

transactions; its updated support is usually only a little larger

than the minimum support. The FUFP-tree can thus be least

updated in this way, and the performance of the proposed

maintenance algorithm can be greatly improved. The entire

FUFP-tree can be re-constructed in a batch way when a suffi-

ciently large number of transactions are inserted.

2.4 INCREMENTAL MINING TECHNIQUE WITH IMBT
STRUCTURE

Incremental Mining Binary Tree (IMBT) [16] is used to rec-

ord the itemsets in an efficient way. In traditional approaches,

the lexicographic tree is used to store the generated candidates

and frequent itemsets. In order to efficiently enumerate the

support of each itemset, binary tree structure i.e. IMBT is used.

Furthermore, this approach does not require to predetermine

the minimum support threshold and scans the database only

once. This method not only performs incremental data mining

more efficiently, but also finds frequent itemsets faster than

the Apriori and FP-growth algorithms.

IMBT structure enumerates the support of each item-

set in an efficient way after the transactions are added or de-

leted. Instead of rescanning the database many times to enu-

merate the support of the itemsets after the database update, it

processes a transaction at a time and record the possible item-

sets in a data structure that can reduce the processing and IO

time.

As already discussed, Apriori and FP-tree algorithm

are batch mining algorithms. Apriori algorithm is costly as it

needs to handle a huge number of candidate sets, as well as it

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

is tedious to repeatedly scan the database and check a large set

of candidates. The FP - tree algorithm is compact and avoids

candidate generation-and-test approach. FP-tree is less costly

than candidate generation and pattern matching operations

performed in most Apriori-like algorithms. With FP-tree

search technique is partitioning-based, divide-and conquer

method rather than Apriori-like level-wise generation of the

combinations of frequent itemsets.

A fast updated FP-tree (FUFP-tree) structure modifies

FP-tree construction algorithm for efficiently handling new

transactions. An incremental FUFP-tree maintenance algo-

rithm is proposed for reducing the execution time in recon-

structing the tree when new transactions are inserted. FUFP-

tree maintenance algorithm runs faster than the batch FP-tree

construction algorithm for handling new transactions and

generates nearly the same tree structure as the FP-tree algo-

rithm.

Incremental Mining Binary Tree (IMBT) is used to

record the itemsets in an efficient way. It is not required to

predetermine the minimum support threshold and scans the

database only once. It also finds frequent itemsets faster than

the Apriori and FPgrowth.

The proposed work will mine the incremental data

using a data structure called Item-Itemset (I-Is) Tree which is

based on the concepts of B+ tree. The proposed work empha-

sizes on reducing the searching time and space requirement

with respect to IMBT.

All tables and figures will be processed as images. You need to
embed the images in the paper itself. Please don’t send the
images as separate files.

3 PROPOSED SYSTEM ARCHITECTURE

In the proposed system, to enumerate the support of each

item and itemset, a data structure called Item-Itemset (I-Is)

tree is used.

3.1 INCREMENTAL MINING TECHNIQUE WITH ITEM-
ITEMSET (I-Is) TREE STRUCTURE

Definition 1 (I-Is-tree): An Item-Itemset tree (or I-Is-tree in

short) is a tree structure defined below.

 1. Root node consists of frequency range defined by the user.

 2. All other nodes in the item-itemset tree consists of items or

itemsets

The items or itemsets are placed in the tree depending upon

its frequency. With this technique, existing dataset is scanned

only once, frequency of each item and itemset is calculated

and I-Is tree is constructed. When incremental data arrives, the

I-Is tree is updated.

The proposed technique executes in two steps. Initially the

existing dataset is scanned once, frequency of each item and

itemset is calculated and I-Is tree is constructed. This process

is shown in Figure 1. When incremental data arrives, already

created I-Is tree is updated, which is shown in Figure 2

Fig. 1: I-Is tree generated for static data

Fig. 2: I-Is tree generated for incremental data

In the process of I-Is tree creation and updation, predetermina-

tion of minimum support threshold is not required. I-Is tree

helps to find frequent itemsets for specified threshold values

after tree creation.

After finding the frequent itemsets, association rule can be

enumerated.

4 DETAILED DESIGN

In this section the algorithm along with the example is dis-

cussed.

I-Is tree is created for the given dataset depending upon the

algorithm and the required frequent itemset is searched by

traversing the tree. Along with that the incremented data will

be inserted in the tree according to the calculated frequency

and tree will be updated.

 The tree creation function will be dependent upon the fre-

quency calculation. And the frequent itemset searching func-

tion will be dependent on tree function whereas incremental

data mining will be dependent on the original data mining

results.

Algorithm:

STEP 1: Scan the input dataset once.

STEP 2: Calculate the frequency of each item & itemsets

STEP 3: Generate root node of I-Is tree.

STEP 4: Generate remaining I-Is tree from items & itemsets

STEP 5: Take threshold value for support from user and search

respected items and itemsets in the tree

STEP 6: For incremental data repeat step 2 and update tree

accordingly.

STEP 7: Update I-Is tree generated in STEP 4.

STEP 8: Repeat step 5.

I-Is incremental learning algorithm is used to mine

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

the frequent itemsets form static as well as incremental data.

This algorithm scans the original dataset once. The dataset is

scanned line by line. All possible items and itemsets in each

transaction along with the frequency count are computed.

After processing of all transactions in the original da-

taset, the actual tree is constructed. Initially the root node is

created. The size of the root node depends upon the user. Thus

it is dynamic in nature. Depending upon the size of the root

node all other nodes in I-Is tree is created with the same node

size as that of the root node. As the root node is created, the

remaining nodes are created depending upon the frequency

count of the computed items and itemsets and frequency

range specified in the root node. Once the complete tree for

the original dataset is created, depending upon the support

value given by the user all frequent items and/or itemsets are

searched from the tree.

 In incremental data, the original dataset is normally

much larger than the incremental database. For incremental

data instead of reconstruction of I-Is tree, the existing I-Is tree

is updated. The incremental dataset is scanned once and all

possible items or itemsets with their frequency count from

incremental dataset are generated. If the new item or itemset is

already exists in the original I-Is tree, its frequency count is

incremented in the tree. Otherwise it is inserted into the tree.

In this manner, the tree is updated for incremental data. After

tree updation, depending upon the support value provided by

the user all frequent items or itemsets are generated.

Pseudo code for the algorithm is as follows:

EXAMPLE:

Step 1: Insert given dataset as input

Step 2: Calculate frequency of each item

 As well as itemset as follows:

Step 3: According to the frequencies create the I-Is tree

Here, root node indicates the range of frequency and

the child node contains the items and itemsets according to

their frequencies where the items with zero frequency are dis-

carded.

Fig. 3: Initial phase of I-Is Tree for items with frequency up to

20%.

Fig. 4: Final I-Is Tree for the given example

For incremental data step 2 is repeated and according to the

calculated frequency of item & itemsets the tree is updated.

5 EXPECTED RESULTS

The proposed work will mine the incremental data using a

data structure called Item-Itemset (I-Is) Tree Frequent items or

itemsets with user specified support values searched. As this

algorithm is incremental in nature new data will be inserted at

proper position depending upon its frequency. This technique

will minimize searching time and the required space.

Root Node

Child Node

International Journal of Scientific & Engineering Research, Volume 3, Issue 11, November-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

5 CONCLUSION

In this paper, I-Is tree structure is proposed to effi-

ciently and effectively handle the existing dataset and new

transaction insertion in data mining. I-Is tree structure is based

on the concepts of B+ tree. For existing dataset I-Is tree is cre-

ated and when new transactions are added, the proposed al-

gorithm processes them to update I-Is tree. It is shown with an

example that by applying a proposed technique searching

time can be reduced and memory requirement can be handled.

REFERENCES

[1] Agrawal, R., Imielinksi T., & Swami, A., “Mining association rules

between sets of items in large database”, In the ACM SIGMOD confer-
ence, Washington pp. 207–216, 1993.

[2] Agrawal, R., Imielinksi, T., & Swami, A., “Database mining: A per-
formance perspective”, IEEE Transactions on Knowledge and Data

Engineering, 5(6), 914–925.1993.

[3] Chen, M. S., Han, J., & Yu, P. S., “Data mining: An overview from a
database perspective”, IEEE Transactions on Knowledge and Data

Engineering, 8(6), 866–883, 1996

[4] Raudel Hernandez Leon, Airel Perez Suarez, Claudia Feregrino Uribe,
Zobeida Jezabel Guzman Zavaleta, “An Algorithm for Mining Fre-

quent Itemsets”, 5th International Conference on Electrical Engineer-

ing, Computing Science and Automatic Control, 2008
[5] Zijian Zheng, Ron Kohavi, Llew Mason “Real World Performance of

Association Rule Algorithms”, ACM-SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, 2001.
[6] J. Han, J. Pei, Y. Yin, “Mining Frequent Itemsets without Candidate

Generation,” ACM SIGMOD International Conference on Manage-

ment of Data, 2000.
[7] Gosta Grahne, Jianfei Zhu, "Fast Algorithms for Frequent Itemset

Mining Using FP-Trees", IEEE Transactions on Knowledge and Data

Engineering, 17(10), October 2005
[8] Qihua Lan, Defu Zhang, “A New Algorithm for Frequent Itemsets

Mining Based On Apriori And FP-Tree”, Global Congress on Intelli-

gent Systems, 978-0-7695-3571-5/09, 2009
[9] Cheung, D. W., Lee, S. D., & Kao, B., “A general incremental tech-

nique for maintaining discovered association rules”. In Proceedings of

database systems for advanced applications, pp. 185–194, 1997.
[10] Chin-Chen Chang, Yu-Chiang Li Jung-San Lee, “An Efficient Algo-

rithm for Incremental Mining of Association Rules”, Proceedings of

the 15th International Workshop on Research Issues in Data Engineer-
ing: Stream Data Mining and Applications (RIDE-

SDMA’05),5,pp.1097-8585, 2005

[11] D. W. Cheung, J. Han, V. T. Ng, C. Y. Wong, “Maintenance of discov-
ered association rules in large databases: An incremental updating ap-

proach,” In The twelfth IEEE international conference on data engi-

neering, pp. 106–114, 1996.
[12] T. P. Hong, C. Y. Wang and Y. H. Tao, "A new incremental data mining

algorithm using pre-large itemsets," Intelligent Data Analysis,5(2),pp.

111-129,2001.
[13] T. P. Hong, J. W. Lin and Y. L. Wu, "A fast updated frequent pattern

tree", The IEEE International Conference on Systems, Man, and Cy-

bernetics, pp.2167-2172, 2006.
[14] Tzung-Pei Hong, Chun-Wei Lin, Yu-Lung Wu, “Incrementally fast

updated frequent pattern trees”, Expert Systems with Applications 34,

pp.2424–2435, 2008
[15] C. W. Lin, T. P. Hong, W. H. Lu, “The Pre-FUFP algorithm for incre-

mental mining”, Proceedings of the 2007 IEEE Symposium on Compu-

tational Intelligence and Data Mining,2007
[16] Chia-Han Yang and Don-Lin Yang, “IMBT - A Binary Tree for Effi-

cient Support Counting of Incremental Data Mining”, Proceedings

2009 International Conference on Computational Science and Engi-
neering,1,pp.324-29,August 2009.

[17] T.SathishKumar, V.Kavitha, Dr.T.Ravichandran “Efficient Tree Based
Distributed Data Mining Algorithms for mining Frequent Patterns”, In-

ternational Journal of Computer Applications, 10(1), pp.0975 – 8887,

November 2010

